$$\begin{split} \sigma_{pp} &= Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{pp} s^{-\eta} - 5Y_2^{\pi p} s^{-\eta}, \\ \sigma_{\bar{p}p} &= Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\pi p} s^{-\eta} + 5Y_2^{\pi p} s^{-\eta}, \\ \sigma_{\pi^+ p} &= R_{\pi p} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\pi p} s^{-\eta} - Y_2^{\pi p} s^{-\eta}, \\ \sigma_{\pi^- p} &= R_{\pi p} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\pi p} s^{-\eta} + Y_2^{\pi p} s^{-\eta}, \\ \sigma_{K^+ p} &= R_{Kp} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{Kp} s^{-\eta} - 2Y_2^{\pi p} s^{-\eta}, \\ \sigma_{K^- p} &= R_{Kp} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{Kp} s^{-\eta} + 2Y_2^{\pi p} s^{-\eta}, \\ \sigma_{\gamma p} &= \delta Z_{pp} + \delta B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\gamma p} s^{-\eta}, \\ \sigma_{\gamma \gamma} &= \delta^2 Z_{pp} + \delta B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\gamma p} s^{-\eta}, \\ \sigma_{\Sigma^- p} &= R_{\Sigma p} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\gamma p} s^{-\eta}, \\ \sigma_{\Sigma^- p} &= R_{\Sigma p} Z_{pp} + B \ln^2 \left(\frac{s}{s_0}\right) + Y_1^{\gamma p} s^{-\eta}, \\ \rho_{pp} \sigma_{pp} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{pp} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} - \frac{5Y_2^{\pi p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{\pi^+ p} \sigma_{\pi^+ p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} - \frac{Y_2^{\pi p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^+ p} \sigma_{K^+ p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} - \frac{Y_2^{\pi p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} - \frac{Y_2^{\pi p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} + \frac{Y_2^{K p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} + \frac{Y_2^{K p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} + \frac{Y_2^{K p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= \pi B \ln \left(\frac{s}{s_0}\right) - \frac{Y_1^{\pi p} s^{-\eta}}{\tan \left[\frac{1-\eta}{2}\pi\right]} + \frac{Y_2^{K p} s^{-\eta}}{\cot \left[\frac{1-\eta}{2}\pi\right]}. \end{cases}$$

Variable s is in the units $[GeV^2]$. The additional scale $s_1 = 1 [GeV^2]$ in terms with $(s/s_1)^{-\eta}$ is omitted for brevity.

Adjustable parameters naming. In total 15 parameters used:

$$egin{array}{rcl} \eta, \delta, R_{\pi p}, R_{K p}, R_{\Sigma p} &- ext{dimensionless} \ Z_{pp}, B &- ext{[mb]} \ s_0 &- ext{[GeV]}^2 \ Y_1^{pp}, Y_{1,2}^{\pi p}, Y_1^{K p}, Y_1^{\Sigma p}, Y_1^{\gamma p}, Y_1^{\gamma \gamma} &- ext{[mb]} \end{array}$$

Scan-fits summary. 2000 database. Without cosmic data points.

$oldsymbol{E}_{ m cm}^{ m min} ~[{ m GeV}]$	3	4	5	6	7	8	9	10
$N_{dof}: ho$ excluded	711	566	492	419	354	316	270	215
$N_{dof}: ho$ included	889	727	633	554	483	438	382	314
$\chi^2/ ext{dof:} ho$ excluded	2.08	1.19	0.90	0.82	0.83	0.83	0.82	0.75
$\chi^2/ ext{dof:} ho$ included	2.38	1.37	1.06	1.01	0.98	0.93	0.93	0.93

Details of the fit to the data in the whole domain of applicabilit	Details	of the	fit to	the data	in the	whole	domain	of applic	ability
--	---------	--------	--------	----------	--------	-------	--------	-----------	---------

	\sqrt{s} of the	Number			
	starting point	of data	χ^2/dof	=	0.98
	in $[GeV]$	points	CL[%]	=	61.92
Breakd	own of the CS d	ata sample	Name of	Numerical	Error
pp :	7.11215	84	value	value	value
$ar{p}p$:	7.30724	49	η	0.54348946	0.0081935994
$\pi^+ p$:	7.56285	29	$R_{\pi p}$	0.59298921	0.0022878054
$\pi^- p$:	7.07441	71	R_{Kp}	0.50671127	0.0027868768
K^+p :	7.57813	28	$R_{\Sigma p}$	0.91666356	0.015165609
K^-p :	7.26205	44	δ	0.0030459166	0.000015472046
$\Sigma^- p$:	11.922	8	B	0.31175883	0.0089639766
γp :	7.27053	31	Z_{pp}	36.784336	0.22246135
$\gamma\gamma$:	7.	25	s_0	39.731955	5.147106
Breake	down of the $ ho$ da	ata sample	Y_{pp1}	48.60371	1.6684776
pp :	7.12795	67	$Y_{\pi p1}$	19.114537	1.394333
$\bar{p}p$:	11.5382	11	$Y_{\pi p2}$	6.5969507	0.25542847
π^+p :	8.98072	8	Y_{Kp1}	4.5316087	1.6383177
$\pi^- p$:	7.56285	30	$Y_{\Sigma p1}$	-18.686719	9.952022
K^+p :	8.99347	8	$Y_{\gamma p1}$	0.017369458	0.0085396805
K^-p :	11.5102	5	$Y_{\gamma\gamma1}$	-0.00042595681	0.00013314926

Model quality indicators:

	A^M	C_1^M	C_2^M	U^M	R_1^M	R_2^M	S_1^M	S_2^M
$(RR_c)^d PL2_u(15)$	1.885	61.92	83.38	16.26	31.13	0.876	0.467	0.795

Repository:

computer - $\mathbf{NPT1}$

directory - d:\MathemD\Kolja\Evela\Gauron\(RRc)dPL2u(15)

						\mathbf{CS}	5 data	a			
Reaction	pp	$ \bar{p}p$	π	^+p	$\pi^- p$	K	$\zeta^+ p \mid$	K^-p	$\Sigma^- p$	γp	$\gamma\gamma$
χ^2/NoP	1.03	1.1	$3 \mid 0$.32	0.91	0).44	0.77	0.43	0.59	0.65
						ρ	data				
-	React	ion	pp	$\bar{p}p$	π^+	p	$\pi^- p$	$p \mid K^+ p$	$ightarrow K^-$	p	
-	χ^2/N	юР	1.6	0.59	9 1.7	1	1.08	0.69	1.57	7	

Figure 7: Pomeron contribution for pp, π^+p , K^+p and Σ^-p [mb] (Axis X - s [GeV²])

Correlation matrix

$(\mathbf{RR}_{\mathrm{c}})^{\mathrm{d}}\mathbf{PL2}_{\mathrm{u}}(15)$ $(\mathbf{N}^{\underline{0}}\mathbf{29})$

Appendix

	h	$R_{\pi p}$	R_{Kp}	$R_{\Sigma p}$	δ	В	Z_{pp}	s_0	Y_{pp1}	$Y_{\pi p1}$	$Y_{\pi p2}$	Y_{Kp1}	$Y_{\Sigma p1}$
h	100	51.2	36.4	-3.89	-13.8	26.6	55.9	42.5	41.9	-24.7	98.7	-41.8	-15.7
$R_{\pi p}$	51.2	100	88.3	2.66	-4.87	83.6	86.2	91.5	-36	-90.2	50.4	-86.9	-20.3
R_{Kp}	36.4	88.3	100	3.28	-4.62	85.7	87	93.2	-52.4	-89.4	36.2	-97.2	-19.7
$R_{\Sigma p}$	-3.89	2.66	3.28	100	1.24	2.89	0.67	2.4	-4.15	-3.24	-3.91	-2.24	-95.7
δ	-13.8	-4.87	-4.62	1.24	100	-2.09	-13.4	-7.66	2.06	6.82	-13.8	8.97	3.01
В	26.6	83.6	85.7	2.89	-2.09	100	80	92.8	-53.8	-84.7	26.3	-82.8	-16.7
Z_{pp}	55.9	86.2	87	0.67	-13.4	80	100	95.7	-50.4	-90.7	55.4	-94.2	-22.5
s_0	42.5	91.5	93.2	2.4	-7.66	92.8	95.7	100	-56.7	-94.6	42	-95.2	-21.2
Y_{pp1}	41.9	-36	-52.4	-4.15	2.06	-53.8	-50.4	-56.7	100	70.3	41.8	56.7	8.08
$Y_{\pi p1}$	-24.7	-90.2	-89.4	-3.24	6.82	-84.7	-90.7	-94.6	70.3	100	-24.8	92.3	19.6
$Y_{\pi p2}$	98.7	50.4	36.2	-3.91	-13.8	26.3	55.4	42	41.8	-24.8	100	-41.9	-15.5
Y_{Kp1}	-41.8	-86.9	-97.2	-2.24	8.97	-82.8	-94.2	-95.2	56.7	92.3	-41.9	100	21.1
$Y_{\Sigma p1}$	-15.7	-20.3	-19.7	-95.7	3.01	-16.7	-22.5	-21.2	8.08	19.6	-15.5	21.1	100
$Y_{\gamma p1}$	-21.8	-47.9	-49.5	-1.27	-73.7	-46.4	-52.4	-53	33.2	51.7	-21.6	51.7	11.6
$Y_{\gamma\gamma1}$	-13.5	-14.3	-12.8	-0.012	-35	-11.7	-13.9	-13.7	0.734	11.3	-13.2	13	3.47

 $\begin{array}{c|c} Y_{\gamma\gamma1} \\ \hline & -13.5 \\ -13.5 \\ -13.5 \\ -12.8 \\ -3.5 \\ -3.5 \\ -3.5 \\ -11.7 \\ -3.5 \\ -13.7 \\ -13.2 \\ -13.2 \\ -13.2 \\ -13.2 \\ 13.2 \\ 13.2 \\ 37.4 \\ 100 \\ 100 \end{array}$

 $\begin{array}{c} Y_{\gamma p1} \\ -21.8 \\ -47.9 \\ -47.9 \\ -46.4 \\ -53.7 \\ -53.2 \\ -53 \\ -53 \\ -53 \\ -53 \\ -53 \\ -51.7 \\ -21.6 \\ 51.7 \\ -21.6 \\ 51.7 \\ -21.6 \\ 37.4 \\ 37.4 \\ \end{array}$

Figure 8: Bold (empty) symbol marks fits with (without) ρ data and are shifted to the right (left) in energy slightly for the cleareness

45