Appendix $\operatorname{RR}(\operatorname{PL2})^{\operatorname{qc}}(18)$ $(\mathbb{N}^{\underline{\circ}}33)$

$$\begin{split} \sigma_{pp} &= 9 \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{pp} s^{-\eta_1} - Y_2^{pp} s^{-\eta_2}, \\ \sigma_{pp} &= 9 \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{np} s^{-\eta_1} + Y_2^{pp} s^{-\eta_2}, \\ \sigma_{\pi^+ p} &= 6 \cdot \lambda_m \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{np} s^{-\eta_1} - Y_2^{np} s^{-\eta_2}, \\ \sigma_{\pi^- p} &= 6 \cdot \lambda_m \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{np} s^{-\eta_1} + Y_2^{np} s^{-\eta_2}, \\ \sigma_{K^+ p} &= 3 \cdot \lambda_m \cdot (1 + \lambda_s) (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{Kp} s^{-\eta_1} - Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{K^- p} &= 3 \cdot \lambda_m \cdot (1 + \lambda_s) (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{Kp} s^{-\eta_1} + Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{\gamma p} &= 6 \cdot \lambda_m \cdot \delta \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\gamma q} &= 4 \cdot \lambda_m^2 \cdot \delta^2 \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\Sigma^- p} &= (6 + 3\lambda_s) \cdot (A + B \cdot \ln s + C \cdot \ln^2 s) + Y_1^{\gamma p} s^{-\eta_1} - Y_2^{\Sigma p} s^{-\eta_2}. \\ \rho_{pp} \sigma_{pp} &= 9\pi \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{pp} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{pp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{\pi^+ p} \sigma_{\pi^+ p} &= 6\pi \lambda_m \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{np} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{pp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^+ p} \sigma_{\pi^- p} &= 6\pi \lambda_m \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{np} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{np} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^+ p} \sigma_{K^+ p} &= 3\pi \lambda_m (1 + \lambda_s) \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{Np} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{Kp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= 3\pi \lambda_m (1 + \lambda_s) \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{Kp} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{Kp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= 3\pi \lambda_m (1 + \lambda_s) \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{Np} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{Kp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= 3\pi \lambda_m (1 + \lambda_s) \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{Kp} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{Kp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= 3\pi \lambda_m (1 + \lambda_s) \left(\frac{B}{2} + C \cdot \ln s\right) - \frac{Y_1^{Np} s^{-\eta_1}}{\tan \left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{Kp} s^{-\eta_2}}{\cot \left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^- p} \sigma_{K^- p} &= 3\pi \lambda_m (1 + \lambda_$$

Variable s is in the units $[GeV^2]$. The additional scale $s_1 = 1$ $[GeV^2]$ in terms with $(s/s_1)^{-\eta_{1,2}}$ is omitted for brevity.

Adjustable parameters naming. In total 18 parameters used:

$$\begin{array}{lll} \eta_1, \eta_2, \delta, \lambda_m, \lambda_s & - & \text{dimensionless} \\ A, B, C, Y_{1,2}^{pp}, Y_{1,2}^{\pi p}, Y_{1,2}^{\Sigma p}, Y_{1,2}^{\gamma p}, Y_1^{\gamma p}, Y_1^{\gamma \gamma} & - & [\text{mb}] \end{array}$$

Scan-fits summary. 2000 database. Without cosmic data points.

$oldsymbol{E}_{ m cm}^{ m min}~[{ m GeV}]$	3	4	5	6	7	8	9	10
N_{dof} : $ ho$ excluded	708	563	489	416	351	313	267	212
$N_{dof}: ho$ included	886	724	630	551	480	435	379	311
$\chi^2/ ext{dof:} ho$ excluded	1.32	0.99	0.85	0.83	0.87	0.87	0.86	0.83
$\chi^2/{ m dof}: ho$ included	1.63	1.13	0.996	0.99	1.017	0.97	0.94	0.93

Details of the fit to the data in the whole domain of applicability

				χ^2/dof	=	0.97
	\sqrt{s} of the	Number		CI [07]		64.2
	starting point	of data	ļ	CL[%]	=	04.2
	in $[GeV]$	points		Name of	Numerical	Error
Breakd	own of the CS d	ata sample		value	value	value
pp:	5.00963	112		η_1	0.20641782	0.010884864
$\bar{n}n$	5.15690	59		η_2	0.5428034	0.0064143149
$\pi^+ n$	5 21275	50		λ_s	0.8845607	0.014172301
$\pi^{-} p$	5 02954	106		λ_m	1.025892	0.0090176125
$K^+ p$	5.02304 5.19707	40		δ	0.0050831683	0.00004929446
K^-p	5.12707	40 62		B	0.79164674	0.090048287
$\mathbf{\Lambda} p.$ $\mathbf{\Sigma}^{-}$	6 19190	05		\boldsymbol{A}	-3.7258004	0.89981109
Σp :	0.12169	9		C	-0.0018160896	0.0028144971
γp :	5.01008	38		Y_{nn1}	109.05955	7.5702999
$\gamma\gamma$:	5.	30		Y_{mn2}	33.077245	0.96873121
Breake	down of the $ ho$ da	ata sample		\mathbf{V}_{1}	63 199232	5 7042522
pp:	5.30542	74		V_{n}	5 7489966	0.16219719
$ar{p}p$:	11.5382	11		\mathbf{V}_{mp2}	51 570071	5 753/723
$\pi^+ p$:	8.98072	8		\mathbf{V}_{Kp1}	12 220008	0.2011160
$\pi^- p$:	7.56285	30		\mathbf{V}_{Kp2}	13.323030	0.000000716
K^+p :	5.21771	10		$egin{array}{c} {}^{I}\gamma p1 \\ {}^{V} \end{array}$	0.30437741	0.029822710
$K^{-}p$:	5.23565	8		$\mathbf{r}_{\gamma\gamma1}$	0.000813/10/0	0.00011445245
				$Y_{\Sigma p1}$	93.17898	8.1691525
				$Y_{\Sigma p2}$	24.200536	10.618283

Model quality indicators:

	A^M	C_1^M	C_2^M	U^M	R_1^M	R_2^M	S_1^M	S^M_2
$RR(PL2)^{qc}(18)$	1.836	52.08	79.38	18.33	34.11	0.706	0.025	1.061

Repository:

computer - $\mathbf{NPT1}$

directory - d:\MathemD\Kolja\Evela\Gauron\(RR)(PL2)qc(18)

Appendix RR(PL2)^{qc}(18) (N $\stackrel{\circ}{=}33$) $\chi^2/{
m NoP}$ by data samples

						\mathbf{CS}	data	a						
Reaction	pp	$ \bar{p}p$	π^+	$p \mid \pi^{-}$	\overline{p}	K	^+p	K	[-p]	Σ	^{-}p	γ_1	p	$\gamma\gamma$
χ^2/NoP	0.88	0.98	8 0.9	6 0.	82	0.	73	0	.63	0	.58	0.7	78	0.98
						ρ	data	a						
	React	ion	pp	$ar{p}p$	π	^+p	π^{-}	p	K^+	p	K^{-}	\overline{p}		
	χ^2/N	IoP	1.56	0.48	1.	89	1.4	9	1.2	9	1.2	21		

Figure 26: Pomeron contribution for \boldsymbol{pp} [mb] (Axis \boldsymbol{X} – \boldsymbol{s} [GeV²])

•	matrix
	Correlation

 $\mathrm{RR}(\mathrm{PL2})^{\mathrm{qc}}(18)~(\mathrm{N}^{\underline{9}}33)$

Appendix

	5	5	-	-	3	۵	K	ζ	7	2	~	2	2	~	2	7	2	7
	1/1	1/2	$\boldsymbol{\lambda}_{s}$	\mathbf{v}_m	0	٩	¥	S	I_{pp1}	I_{pp2}	$I \pi p I$	$I \pi p 2$	I K p 1	I K p 2	$^{I}\gamma p1$	$I \gamma \gamma 1$	${}^{I}\Sigma_{p1}$	$\mathbf{I} \Sigma p2$
η_1	100	31.2	-88.8	-93	-16.1	-87	94.6	70.5	-91.8	33.1	-93.3	26.8	-94.1	27.6	-93.6	-93.3	-90.6	-3.96
η_2	31.2	100	-31.3	-12	-8.6	-24.1	26.6	19.4	-23.7	97.5	-24.8	88.5	-25.3	94.6	-25	-25.5	-24	4.61
$\boldsymbol{\lambda}_s$	-88.8	-31.3	100	75.7	19.6	75	-82.4	-59.7	79.5	-33.1	80.9	-27.7	81.9	-27	81.3	81.3	77.8	0.0383
$\boldsymbol{\lambda}_m$	-93	-12	75.7	100	9.07	83.4	-90.2	-67.6	88.8	-12.5	89.9	-8.88	90.5	-9.27	90.1	89.3	87.9	6.89
δ	-16.1	-8.6	19.6	9.07	100	13.4	-14.7	-10.9	14	-9.06	14.3	-7.95	14.5	-7.89	14.6	12.1	13.7	-0.549
B	-87	-24.1	75	83.4	13.4	100	-98.2	-96	99.2	-25.5	98.7	-18.7	98.3	-20.6	98.6	96.6	96.1	3.67
A	94.6	26.6	-82.4	-90.2	-14.7	-98.2	100	89.2	-99.7	28.1	-99.9	21.4	-100	22.9	-99.9	-98.5	-97.2	-4.04
C	70.5	19.4	-59.7	-67.6	-10.9	-96	89.2	100	-91.8	20.6	-90.4	14.1	-89.4	16.3	-90	-87.3	-88	-2.81
Y_{pp1}	-91.8	-23.7	79.5	88.8	14	99.2	-99.7	-91.8	100	-24.9	99.9	-18.6	99.8	-20.2	99.9	98.1	97.3	4.18
Y_{pp2}	33.1	97.5	-33.1	-12.5	-9.06	-25.5	28.1	20.6	-24.9	100	-26.1	86.4	-26.7	92.2	-26.4	-26.9	-25.2	4.75
$Y_{\pi p1}$	-93.3	-24.8	80.9	89.9	14.3	98.7	-99.9	-90.4	99.9	-26.1	100	-19.7	100	-21.2	100	98.4	97.3	4.18
$Y_{\pi p2}$	26.8	88.5	-27.7	-8.88	-7.95	-18.7	21.4	14.1	-18.6	86.4	-19.7	100	-20.2	83.7	-19.9	-20.5	-19	4.27
Y_{Kp1}	-94.1	-25.3	81.9	90.5	14.5	98.3	-100	-89.4	99.8	-26.7	100	-20.2	100	-21.8	100	98.4	97.3	4.18
Y_{Kp2}	27.6	94.6	-27	-9.27	-7.89	-20.6	22.9	16.3	-20.2	92.2	-21.2	83.7	-21.8	100	-21.4	-22	-20.6	4.34
$Y_{\gamma p1}$	-93.6	-25	81.3	90.1	14.6	98.6	-99.9	-90	99.9	-26.4	100	-19.9	100	-21.4	100	98.4	97.3	4.18
$Y_{\gamma\gamma^1}$	-93.3	-25.5	81.3	89.3	12.1	96.6	-98.5	-87.3	98.1	-26.9	98.4	-20.5	98.4	-22	98.4	100	95.7	4.09
$Y_{\Sigma p1}$	-90.6	-24	77.8	87.9	13.7	96.1	-97.2	-88	97.3	-25.2	97.3	-19	97.3	-20.6	97.3	95.7	100	26.7
$Y_{\Sigma p2}$	-3.96	4.61	0.0383	6.89	-0.549	3.67	-4.04	-2.81	4.18	4.75	4.18	4.27	4.18	4.34	4.18	4.09	26.7	100

Figure 27: Bold (empty) symbol marks fits with (without) ρ data and are shifted to the right (left) in energy slightly for the cleareness

