<

$$\begin{cases} \sigma_{pp} = B_{pp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{pp} s^{-\eta_{1}} - Y_{2}^{pp} s^{-\eta_{2}}, \\ \sigma_{\bar{p}p} = B_{pp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{pp} s^{-\eta_{1}} + Y_{2}^{pp} s^{-\eta_{2}}, \\ \sigma_{\pi^{+}p} = B_{\pi p} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{\pi p} s^{-\eta_{1}} - Y_{2}^{\pi p} s^{-\eta_{2}}, \\ \sigma_{\pi^{-}p} = B_{\pi p} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{\pi p} s^{-\eta_{1}} - Y_{2}^{\pi p} s^{-\eta_{2}}, \\ \sigma_{K^{+}p} = B_{Kp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{Kp} s^{-\eta_{1}} - Y_{2}^{Kp} s^{-\eta_{2}}, \\ \sigma_{K^{-}p} = B_{Kp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{Kp} s^{-\eta_{1}} + Y_{2}^{Kp} s^{-\eta_{2}}, \\ \sigma_{\gamma p} = \delta B_{pp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{\gamma p} s^{-\eta_{1}}, \\ \sigma_{\gamma p} = \delta B_{pp} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{\gamma p} s^{-\eta_{1}}, \\ \sigma_{\Sigma^{-}p} = B_{\Sigma p} \ln\left(\frac{s}{s_{0}}\right) + Y_{1}^{\Sigma p} s^{-\eta_{1}} - Y_{2}^{\Sigma p} s^{-\eta_{2}}. \end{cases}$$

Variable s is in the units  $[GeV^2]$ . The additional scale  $s_1 = 1$   $[GeV^2]$  in terms with  $(s/s_1)^{-\eta_{1,2}}$  is omitted for brevity.

Adjustable parameters naming. In total 18 parameters used:

| $\eta_1,\eta_2,\delta$                                                                                                                              | _ | dimensionless  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|
| $s_0$                                                                                                                                               | _ | $[{ m GeV^2}]$ |
| $B_{pp}, B_{\pi p}, B_{Kp}, B_{\Sigma p}, Y_{1,2}^{pp}, Y_{1,2}^{\pi p}, Y_{1,2}^{Kp}, Y_{1,2}^{\Sigma p}, Y_{1}^{\gamma p}, Y_{1}^{\gamma \gamma}$ | — | [mb]           |

Scan-fits summary. 2000 database. Without cosmic data points.

| $E_{ m cm}^{ m min} ~[ m GeV]$ | 3    | 4    | 5    | 6    | 7    | 8    | 9    | 10   |
|--------------------------------|------|------|------|------|------|------|------|------|
| $N_{dof}$ : $ ho$ excluded     | 708  | 563  | 489  | 416  | 351  | 313  | 267  | 212  |
| $N_{dof}:  ho$ included        | 886  | 724  | 630  | 551  | 480  | 435  | 379  | 311  |
| $\chi^2/{ m dof}: ho$ excluded | 1.33 | 0.98 | 0.85 | 0.83 | 0.87 | 0.87 | 0.87 | 0.86 |
| $\chi^2/{ m dof}: ho$ included | 1.63 | 1.13 | 0.99 | 0.99 | 1.02 | 0.97 | 0.95 | 0.94 |

Details of the fit to the data in the whole domain of applicability

| [                 |                                       |            | $\chi^2/dof$                    | =             | 0.99           |
|-------------------|---------------------------------------|------------|---------------------------------|---------------|----------------|
|                   | $\sqrt{s}$ of the                     | Number     |                                 |               | 53 50          |
|                   | starting point                        | of data    |                                 |               | 00.09          |
|                   | in $[GeV]$                            | points     | Name of                         | Numerical     | Error          |
| Breakd            | own of the CS d                       | ata sample | value                           | value         | value          |
| <b>pp</b> :       | 5.00963                               | 112        | $s_0$                           | 79.371146     | 30.364068      |
| $\bar{p}p$ :      | 5.1569                                | 59         | $\eta_1$                        | 0.21134153    | 0.0079899165   |
| $\pi^+p$ :        | 5.21275                               | 50         | $\eta_2$                        | 0.54379057    | 0.0063134496   |
| $\pi^{-}p$ :      | 5.02954                               | 106        | δ                               | 0.0034613974  | 0.000040046313 |
| $K^+p$ :          | 5.12707                               | 40         | $B_{pp}$                        | 6.6282714     | 0.2193893      |
| $K^-p$            | 5.10875                               | 63         | $B_{\pi p}$                     | 4.5169301     | 0.1758988      |
| $\Sigma^- p$ :    | 6.12189                               | 9          | $B_{Kp}$                        | 4.2433142     | 0.18543239     |
| $\gamma p$ :      | 5.01008                               | 38         | $B_{\Sigma p}$                  | 7.0077696     | 0.45733392     |
| $\gamma \gamma$ : | 5.                                    | 30         | $Y_{pp1}$                       | 104.68182     | 2.8145916      |
| Break             | down of the <b>o</b> de               | ta sample  | $Y_{pp2}$                       | 33.233187     | 0.955194       |
| Dicak             | 1000000000000000000000000000000000000 |            | $Y_{\pi p1}$                    | 59.961722     | 2.2920277      |
| pp:               | 5.30542                               | 74         | $Y_{\pi p2}$                    | 5.7676909     | 0.16148659     |
| $ar{p}p$ :        | 11.5382                               | 11         | $Y_{Kp1}$                       | 48.356988     | 2.4200267      |
| $\pi^+ p$ :       | 8.98072                               | 8          | $Y_{Kn2}$                       | 13.378884     | 0.37841563     |
| $\pi^-p$ :        | 7.56285                               | 30         | $Y_{\Sigma n1}$                 | 80.700378     | 6.5379733      |
| $\mid K^+p$ :     | 5.21771                               | 10         | $Y_{\Sigma n2}^{\Sigma n2}$     | -10.906282    | 22.608186      |
| $K^-p$ :          | 5.23565                               | 8          | $Y_{\gamma n1}^{\Sigma p2}$     | 0.28772569    | 0.012242677    |
|                   |                                       |            | $Y_{\gamma\gamma1}^{\prime P1}$ | 0.00075115814 | 0.000052959407 |

## Model quality indicators:

|                | $A^M$ | $C_1^M$ | $C_2^M$ | $U^M$ | $R_1^M$ | $R_2^M$ | $S_1^M$ | $S_2^M$ |
|----------------|-------|---------|---------|-------|---------|---------|---------|---------|
| <b>RRL(18)</b> | 1.823 | 53.59   | 77.18   | 16.73 | 34.11   | 0.686   | 0.217   | 0.00052 |

## **Repository**:

computer -  $\mathbf{NPT1}$ 

directory - d:\MathemD\Kolja\Evela\Gauron\(RR)L(18)

|                       |            |               |         |             |              | $\mathbf{CS}$ | data      | a          |       |        |                |                |
|-----------------------|------------|---------------|---------|-------------|--------------|---------------|-----------|------------|-------|--------|----------------|----------------|
| Reaction              | pp         | $\mid ar{p}p$ | $\pi^+$ | p           | $\pi^- p$    | K             | $^+p$     | $K^-p$     | Σ     | $b^-p$ | $\gamma p$     | $\gamma\gamma$ |
| $\chi^2/\mathrm{NoP}$ | 0.88       | 0.98          | 8 0.9   | 9           | 0.81         | 0.            | 73        | 0.62       | 0     | .41    | 0.77           | 0.97           |
|                       |            |               |         |             |              | ρ             | data      | a          |       |        |                |                |
|                       | React      | ion           | pp      | $  \bar{p}$ | $p \mid \pi$ | $^+p$         | $\pi^{-}$ | $p \mid K$ | $^+p$ | K      | $\overline{p}$ |                |
|                       | $\chi^2/N$ | loP           | 1.56    | 0.          | 47 1         | .91           | 1.5       | 2   1.     | 25    | 1.2    | 22             |                |

Appendix RRL(18) (N<sup> $\circ$ </sup>5)  $\chi^2$ /NoP by data samples



Figure 37: Pomeron contribution for pp,  $\pi^+p$ ,  $K^+p$  and  $\Sigma^-p$  [mb] (Axis X - s [GeV<sup>2</sup>])

|                     | $s_0$ | $\eta_1$ | $\eta_2$ | δ     | $B_{pp}$ | $B_{\pi p}$ | $B_{Kp}$ | $B_{\Sigma p}$ | $Y_{pp1}$ | $Y_{pp2}$ | $Y_{\pi p1}$ | $Y_{\pi p2}$ | $Y_{Kp1}$ | $Y_{Kp2}$ | $Y_{\Sigma p1}$ | $Y_{\Sigma p2}$ | $Y_{\gamma p1}$ | $Y_{\gamma\gamma^1}$ |
|---------------------|-------|----------|----------|-------|----------|-------------|----------|----------------|-----------|-----------|--------------|--------------|-----------|-----------|-----------------|-----------------|-----------------|----------------------|
| $s_0$               | 100   | -99.2    | -20.8    | 59.4  | 99.3     | 99.2        | 99.4     | 59.6           | 98.6      | -21.8     | 99.4         | -19.8        | 99.6      | -18.8     | 65.5            | -6.21           | 99.4            | 91.9                 |
| $\eta_1$            | -99.2 | 100      | 25       | -58.3 | -97.2    | -96.9       | -97.6    | -58.9          | -95.7     | 26.6      | -97.1        | 23.9         | -97.7     | 22.9      | -63.9           | 5.76            | -97.3           | -90.5                |
| $\eta_2$            | -20.8 | 25       | 100      | -4.64 | -19.5    | -16.3       | -18      | -11.9          | -14.4     | 97.4      | -16.8        | 88.3         | -17.8     | 94.5      | -10.1           | 0.529           | -17.2           | -17.6                |
| δ                   | 59.4  | -58.3    | -4.64    | 100   | 58.8     | 59.5        | 59.4     | 35.5           | 59.4      | -4.69     | 59.5         | -4.91        | 59.6      | -3.82     | 39.3            | -3.81           | 58.6            | 48.5                 |
| $B_{pp}$            | 99.3  | -97.2    | -19.5    | 58.8  | 100      | 99.7        | 99.6     | 59.4           | 99.6      | -20.2     | 99.9         | -18.3        | 99.8      | -17.4     | 65.9            | -6.5            | 99.8            | 91.9                 |
| $B_{pip}$           | 99.2  | -96.9    | -16.3    | 59.5  | 99.7     | 100         | 99.60    | 59.4           | 99.7      | -16.8     | 99.9         | -15.4        | 99.8      | -14.4     | 65.9            | -6.52           | 99.8            | 91.8                 |
| $B_{Kp}$            | 99.4  | -97.6    | -18      | 59.4  | 99.6     | 99.6        | 100      | 59.5           | 99.4      | -18.6     | 99.8         | -17.1        | 99.8      | -15.8     | 65.8            | -6.43           | 99.7            | 91.8                 |
| $B_{\Sigma p}$      | 59.6  | -58.9    | -11.9    | 35.5  | 59.4     | 59.4        | 59.5     | 100            | 59.1      | -12.4     | 59.5         | -11.3        | 59.6      | -10.7     | -16.2           | 66.7            | 59.5            | 54.9                 |
| $Y_{pp1}$           | 98.6  | -95.7    | -14.4    | 59.4  | 99.6     | 99.7        | 99.4     | 59.1           | 100       | -14.4     | 99.8         | -13.7        | 99.7      | -12.5     | 66              | -6.63           | 99.7            | 91.5                 |
| $Y_{pp2}$           | -21.8 | 26.6     | 97.4     | -4.69 | -20.2    | -16.8       | -18.6    | -12.4          | -14.4     | 100       | -17.4        | 86.2         | -18.4     | 92.1      | -10.5           | 0.448           | -17.7           | -18.3                |
| $Y_{\pi p1}$        | 99.4  | -97.1    | -16.8    | 59.5  | 99.9     | 99.9        | 99.8     | 59.5           | 99.8      | -17.4     | 100          | -16.1        | 100       | -14.9     | 66              | -6.51           | 99.9            | 91.9                 |
| $Y_{\pi p2}$        | -19.8 | 23.9     | 88.3     | -4.91 | -18.3    | -15.4       | -17.1    | -11.3          | -13.7     | 86.2      | -16.1        | 100          | -16.9     | 83.4      | -9.65           | 0.468           | -16.3           | -16.7                |
| $Y_{Kp1}$           | 99.6  | -97.7    | -17.8    | 59.6  | 99.8     | 99.8        | 99.8     | 59.6           | 99.7      | -18.4     | 100          | -16.9        | 100       | -15.9     | 66              | -6.45           | 99.9            | <b>92</b>            |
| $Y_{Kp2}$           | -18.8 | 22.9     | 94.5     | -3.82 | -17.4    | -14.4       | -15.8    | -10.7          | -12.5     | 92.1      | -14.9        | 83.4         | -15.9     | 100       | -8.9            | 0.416           | -15.2           | -15.7                |
| $Y_{\Sigma p1}$     | 65.5  | -63.9    | -10.1    | 39.3  | 65.9     | 65.9        | 65.8     | -16.2          | 66        | -10.5     | 66           | -9.65        | 66        | -8.9      | 100             | -78.8           | 66              | 60.6                 |
| $Y_{\Sigma p2}$     | -6.21 | 5.76     | 0.529    | -3.81 | -6.5     | -6.52       | -6.43    | 66.7           | -6.63     | 0.448     | -6.51        | 0.468        | -6.45     | 0.416     | -78.8           | 100             | -6.49           | -5.87                |
| $Y_{\gamma p1}$     | 99.4  | -97.3    | -17.2    | 58.6  | 99.8     | 99.8        | 99.7     | 59.5           | 99.7      | -17.7     | 99.9         | -16.3        | 99.9      | -15.2     | 66              | -6.49           | 100             | 92                   |
| $Y_{\gamma\gamma1}$ | 91.9  | -90.5    | -17.6    | 48.5  | 91.9     | 91.8        | 91.8     | 54.9           | 91.5      | -18.3     | 91.9         | -16.7        | 92        | -15.7     | 60.6            | -5.87           | 92              | 100                  |

**Correlation matrix** 

 $RRL(18) (N^{\circ}5)$ 

Appendix



Figure 38: Bold (empty) symbol marks fits with (without)  $\rho$  data and are shifted to the right (left) in energy slightly for the cleareness

