$$\begin{split} \sigma_{pp} &= A + B \ln s + Y_1^{pp} s^{-\eta_1} - Y_2^{pp} s^{-\eta_2}, \\ \sigma_{\bar{p}p} &= A + B \ln s + Y_1^{pp} s^{-\eta_1} + Y_2^{pp} s^{-\eta_2}, \\ \sigma_{\pi^+p} &= \lambda_{\pi p} (A + B \ln s) + Y_1^{\pi p} s^{-\eta_1} - Y_2^{\pi p} s^{-\eta_2}, \\ \sigma_{\pi^-p} &= \lambda_{\pi p} (A + B \ln s) + Y_1^{\pi p} s^{-\eta_1} - Y_2^{\pi p} s^{-\eta_2}, \\ \sigma_{K^+p} &= \lambda_{Kp} (A + B \ln s) + Y_1^{Kp} s^{-\eta_1} - Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{K^-p} &= \lambda_{Kp} (A + B \ln s) + Y_1^{Kp} s^{-\eta_1} + Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{\gamma p} &= \lambda_{\gamma p} (A + B \ln s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\gamma \gamma} &= \lambda_{\gamma \gamma} (A + B \ln s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\Sigma^-p} &= \lambda_{\Sigma p} (A + B \ln s) + Y_1^{\gamma p} s^{-\eta_1} - \frac{Y_2^{\Sigma p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{pp} \sigma_{pp} &= \frac{\pi B}{2} - \frac{Y_1^{pp} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{pp} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{\pi^+p} \sigma_{\pi^+p} &= \frac{\pi \lambda_{\pi p} B}{2} - \frac{Y_1^{\pi p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{\pi p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^+p} \sigma_{K^+p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} - \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{Kp} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{K^p} s^{-\eta_2}}{\cot\left[\frac{1 - \eta_2}{2}\pi\right]}, \\ \rho_{K^-p} \sigma_{K^-p} &= \frac{\pi \lambda_{K^p} B}{2} - \frac{Y_1^{K^p} s^{-\eta_1}}{\tan\left[\frac{1 - \eta_1}{2}\pi\right]} + \frac{Y_2^{K^p} s^{-$$

Variable s is in the units $[GeV^2]$. The additional scale $s_1 = 1$ $[GeV^2]$ in terms with $(s/s_1)^{-\eta_{1,2}}$ is omitted for brevity.

Adjustable parameters naming. In total 19 parameters used:

$$\begin{array}{lll} \eta_1, \eta_2, \lambda_{\pi p}, \lambda_{K p}, \lambda_{\Sigma p}, \lambda_{\gamma p}, \lambda_{\gamma \gamma} &- \text{ dimensionless} \\ A, B, Y_{1,2}^{pp}, Y_{1,2}^{\pi p}, Y_{1,2}^{K p}, Y_{1,2}^{\Sigma p}, Y_1^{\gamma p}, Y_1^{\gamma \gamma} &- \text{ [mb]} \end{array}$$

Scan-fits summary. 2000 database. Without cosmic data points.

$oldsymbol{E}_{ m cm}^{ m min}~[{ m GeV}]$	3	4	5	6	7	8	9	10
N_{dof} : $ ho$ excluded	707	562	488	415	350	312	266	211
N_{dof} : $ ho$ included	885	723	629	550	479	434	378	310
$\chi^2/{ m dof}:~ ho$ excluded	1.31	0.96	0.82	0.80	0.85	0.85	0.86	0.85
$\chi^2/{ m dof}: ho$ included	1.61	1.10	0.97	0.97	1.00^{+}	0.96	0.94	0.93

Details of the fit to the data in the whole domain of applicability

			χ^2/dof	=	0.96
	\sqrt{s} of the	Number	CL[%]	=	73.37
	starting point in $[\mathbf{CoV}]$	of data	Name of	Numerical	Error
Drooled	orm of the CS d	points	value	value	value
Dreaku		ata sample	η_1	0.20882981	0.0079614232
pp:	5.00963	112	η_2	0.54453128	0.0063019647
$ar{p}p$:	5.1569	59	\boldsymbol{A}	-30.265138	3.5910289
$\pi^+ p$:	5.21275	50	B	6.7106141	0.22385882
$\pi^- p$:	5.02954	106	$\lambda_{\pi p}$	0.68327599	0.0044808709
K^+p :	5.12707	40	λ_{Kp}	0.64286874	0.0072794518
K^-p :	5.10875	63	$\lambda_{\Sigma n}$	1.0592424	0.056297244
$\Sigma^- p$:	6.12189	9	$\lambda_{\gamma p}^{-r}$	0.0035618445	0.000047918883
$oldsymbol{\gamma} p$:	5.01008	38	$\lambda_{\gamma\gamma}$	9.374557E-06	5.2133847E-07
$\gamma\gamma$:	5.	30	Y_{pp1}	105.82114	2.9176709
Breako	down of the $ ho$ da	ata sample	Y_{pp2}	33.358907	0.95687062
pp :	5.30542	74	$Y_{\pi p1}$	60.857618	2.3785275
$\bar{p}p$:	11.5382	11	$Y_{\pi p2}$	5.7873973	0.16186994
$\pi^+ p$:	8.98072	8	Y_{Kp1}	49.287574	2.5110257
$\pi^- p$:	7.56285	30	Y_{Kp2}	13.422998	0.37896917
K^+p :	5.21771	10	$Y_{\Sigma p1}$	82.396912	6.4347176
K^-p :	5.23565	8	$Y_{\Sigma p2}$	-10.218457	22.394595
_			$Y_{\gamma p1}$	0.29228378	0.013276189
			$Y_{\gamma\gamma1}$	0.00081381593	0.000039711574

Model	quality	indicators
mouci	quanty	maicators

	A^M	C_1^M	C_2^M	U^M	R_1^M	R^M_2	S_1^M	S^M_2
RRL(19)	1.825	73.37	81.09	16.63	32.40	0.784	0.289	1.302

$\underline{\mathbf{Repository}}:$

computer - $\mathbf{NPT1}$

directory - d:\MathemD\Kolja\Evela\Gauron\(RR)L(19)

Appendix RRL(19) (N^{\circ}4) χ^2 /NoP by data samples

					CS dat	a			
Reaction	pp	$\bar{p}p$	$\mid \pi^+ p$	$\pi^- p$	$\mid K^+p$	$\mid K^-p$	$\Sigma^- p$	γp	$\gamma\gamma$
χ^2/NoP	0.88	0.99	0.98	0.82	0.73	0.63	0.41	0.7	0.53
ſ					ρ data	L			
	Reaction	on p	$pp \mid \bar{p}_{f}$	$p \mid \pi^+$	$p \mid \pi^{-1}$	$p \mid K^+ p$	$b \mid K^{-}$	\boldsymbol{p}	
	γ^2/Nc	$\mathbf{P} \mid 1.$	56 0.4	16 1.8	8 1.3	9 1.26	1.22	2	

Figure 5: Pomeron contribution for pp, [mb] (Axis X - s [GeV²])

×
• –
D
ē
Ō.
5
4

 $\operatorname{RRL}(19) (\mathrm{N}^{04})$

Correlation matrix

	η_1	η_2	${f A}$	В	$\lambda_{\pi p}$	λ_{Kp}	$\lambda_{\Sigma p}$	$\lambda_{\gamma p}$	$\lambda_{\gamma\gamma}$	Y_{pp1}	Y_{pp2}	$Y_{\pi p1}$	$Y_{\pi p2}$	Y_{Kp1}	Y_{Kp2}	$Y_{\Sigma p1}$	$Y_{\Sigma p2}$	$Y_{\gamma p1}$	$Y_{\gamma\gamma1}$
η_1	100	24.6	98.8	-97.2	-87.3	-94.7	-11.9	-63	-10.8	-95.9	26.2	-97.3	23.6	-97.8	22.5	-66.6	5.72	-97.5	-81.4
η_2	24.6	100	20.2	-19.1	1.71	-12.3	-2.42	-5.23	-1.12	-14.3	97.4	-16.5	88.3	-17.5	94.4	-10.5	0.482	-17.1	-14
\mathbf{V}	98.8	20.2	100	-99.6	-90.2	-95.5	-11.4	-64.2	-10.6	-99.1	21.1	-99.7	19.2	-99.8	18.1	-68.4	6.25	-99.7	-83.4
В	-97.2	-19.1	-99.6	100	89.9	94.5	10.9	63.8	10.4	99.7	-19.9	99.9	-18.1	99.8	-17.1	68.6	-6.45	99.8	83.5
$\lambda_{\pi p}$	-87.3	1.71	-90.2	89.9	100	90.6	10.6	62.3	10.3	91.9	2.11	91.5	0.865	91.3	2.56	63	-6.04	91.3	76.5
λ_{Kp}	-94.7	-12.3	-95.5	94.5	90.6	100	11.4	63.5	10.7	94.9	-12.8	95.3	-12.4	95.5	-10	65.5	-5.93	95.4	79.8
λ_{Σ_p}	-11.9	-2.42	-11.4	10.9	10.6	11.4	100	7.59	1.37	10.8	-2.6	11	-2.43	11.2	-2.22	-58.4	86.4	11.1	9.26
$\lambda_{\gamma p}$	-63	-5.23	-64.2	63.8	62.3	63.5	7.59	100	7.22	64.4	-5.3	64.5	-5.53	64.5	-4.32	44.4	-4.11	64	53.9
$\lambda_{\gamma\gamma}$	-10.8	-1.12	-10.6	10.4	10.3	10.7	1.37	7.22	100	10.4	-1.19	10.5	-1.21	10.6	-0.977	7.24	-0.622	10.6	-12.6
Y_{pp1}	-95.9	-14.3	-99.1	99.7	91.9	94.9	10.8	64.4	10.4	100	-14.4	99.9	-13.7	99.7	-12.5	68.7	-6.58	99.7	83.5
Y_{pp2}	26.2	97.4	21.1	-19.9	2.11	-12.8	-2.6	-5.3	-1.19	-14.4	100	-17.1	86.2	-18.1	92	-10.8	0.4	-17.7	-14.5
$Y_{\pi p1}$	-97.3	-16.5	-99.7	99.9	91.5	95.3	11	64.5	10.5	99.9	-17.1	100	-16	100	-14.6	68.7	-6.46	99.9	83.6
$Y_{\pi p2}$	23.6	88.3	19.2	-18.1	0.865	-12.4	-2.43	-5.53	-1.21	-13.7	86.2	-16	100	-16.7	83.4	-10.1	0.431	-16.3	-13.4
Y_{Kp1}	-97.8	-17.5	-99.8	99.8	91.3	95.5	11.2	64.5	10.6	99.7	-18.1	100	-16.7	100	-15.6	68.7	-6.4	99.9	83.6
Y_{Kp2}	22.5	94.4	18.1	-17.1	2.56	-10	-2.22	-4.32	-0.977	-12.5	92	-14.6	83.4	-15.6	100	-9.19	0.371	-15.1	-12.4
$Y_{\Sigma p1}$	-66.6	-10.5	-68.4	68.6	63	65.5	-58.4	44.4	7.24	68.7	-10.8	68.7	-10.1	68.7	-9.19	100	-76.5	68.7	57.5
$Y_{\Sigma p2}$	5.72	0.482	6.25	-6.45	-6.04	-5.93	86.4	-4.11	-0.622	-6.58	0.4	-6.46	0.431	-6.4	0.371	-76.5	100	-6.43	-5.4
$Y_{\gamma p1}$	-97.5	-17.1	-99.7	99.8	91.3	95.4	11.1	64	10.6	99.7	-17.7	99.9	-16.3	99.9	-15.1	68.7	-6.43	100	83.6
$Y_{\gamma\gamma1}$	-81.4	-14	-83.4	83.5	76.5	79.8	9.26	53.9	-12.6	83.5	-14.5	83.6	-13.4	83.6	-12.4	57.5	-5.4	83.6	100

Figure 6: Bold (empty) symbol marks fits with (without) ρ data and are shifted to the right (left) in energy slightly for the cleareness

