$$\begin{split} \sigma_{pp} &= 9B\ln^2\left(\frac{s}{s_0}\right) + 9Y_1^{pp}s^{-\eta_1} - 5Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{pp} &= 9B\ln^2\left(\frac{s}{s_0}\right) + 9Y_1^{pp}s^{-\eta_1} + 5Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{\pi^+p} &= 6\lambda_m B\ln^2\left(\frac{s}{s_0}\right) + 6\lambda_{m1}Y_1^{pp}s^{-\eta_1} - Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{\pi^-p} &= 6\lambda_m B\ln^2\left(\frac{s}{s_0}\right) + 6\lambda_{m1}Y_1^{pp}s^{-\eta_1} - Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{K^+p} &= 3\lambda_m(1+\lambda_s)B\ln^2\left(\frac{s}{s_0}\right) + 3\lambda_{m1}(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1} - 2Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{K^-p} &= 3\lambda_m(1+\lambda_s)B\ln^2\left(\frac{s}{s_0}\right) + 3\lambda_{m1}(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1} + 2Y_2^{\pi p}s^{-\eta_2}, \\ \sigma_{\gamma p} &= 6\lambda_m \delta B\ln^2\left(\frac{s}{s_0}\right) + 6\lambda_{m1}\delta Y_1^{pp}s^{-\eta_1}, \\ \sigma_{\gamma \gamma} &= 4\lambda_m^2\delta^2 B\ln^2\left(\frac{s}{s_0}\right) + 6\lambda_{m1}\delta Y_1^{pp}s^{-\eta_1}, \\ \sigma_{\Sigma^-p} &= (6+3\lambda_s)B\ln^2\left(\frac{s}{s_0}\right) + (6+3\lambda_{s1})Y_1^{pp}s^{-\eta_1} - Y_2^{\Sigma p}s^{-\eta_2}, \\ \rho_{pp}\sigma_{pp} &= 9\pi B\ln\left(\frac{s}{s_0}\right) - \frac{9Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} - \frac{5Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{\pi^+p}\sigma_{\pi^+p} &= 6\pi\lambda_m B\ln\left(\frac{s}{s_0}\right) - \frac{6\lambda_{m1}Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} - \frac{Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^+p}\sigma_{K^+p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}s^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}s^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]}, \\ \rho_{K^-p}\sigma_{K^-p} &= 3\pi\lambda_m(1+\lambda_s)B\ln\left(\frac{s}{s_0}\right) - \frac{3\lambda_m(1+\lambda_{s1})Y_1^{pp}g^{-\eta_1}}{\tan\left[\frac{1-\eta_1}{2}\pi\right]} + \frac{2Y_2^{\pi p}g^{-\eta_2}}{\cot\left[\frac{1-\eta_2}{2}\pi\right]},$$

Variable s is in the units $[GeV^2]$. The additional scale $s_1 = 1$ $[GeV^2]$ in terms with $(s/s_1)^{-\eta_{1,2}}$ is omitted for brevity.

Adjustable parameters naming. In total 12 parameters used:

$$egin{array}{rcl} \eta_1,\eta_2,\delta,\lambda_m,\lambda_s,\lambda_{m1},\lambda_{s1}&-& ext{dimensionless}\ s_0&-&[ext{GeV}^2]\ B,Y_1^{pp},Y_2^{\pi p},Y_2^{\Sigma p},&-&[ext{mb}] \end{array}$$

	Scan-fits	summary.	2000	database.	Without	cosmic	data	points.
--	-----------	----------	------	-----------	---------	--------	------	---------

$m{E}_{ m cm}^{ m min}~[{ m GeV}]$	3	4	5	6	7	8	9	10
N_{dof} : $ ho$ excluded	714	569	495	422	357	319	273	218
N_{dof} : $ ho$ included	892	730	636	557	486	441	385	317
$\chi^2/ ext{dof:} ho$ excluded	2.39	1.38	1.03	0.89	0.90	0.89	0.91	0.91
$\chi^2/{ m dof}: ho$ included	2.38	1.44	1.16	1.07	1.07	1.01	0.98	0.98

Details	of the	fit to	the	data	in	the	whole	domain	of	applica	ability
Details	or unc	110 00	unc	uava	111	unc	whole	uomam	O1	appile	comby

	\sqrt{s} of the	Number
	starting point	of data
	in $[GeV]$	points
pp :	9.02958	74
$ar{m{p}}m{p}$:	9.02958	35
$\pi^+ p$:	9.23822	24
$\pi^- p$:	9.23822	49
K^+p :	9.2506	22
K^-p :	9.2506	28
$\Sigma^- p$:	11.922	8
$oldsymbol{\gamma} p$:	9.12473	25
$\gamma\gamma$:	9.	20
Breakd	own of the CS d	ata sample
pp :	9.02958	59
$ar{p}p$:	11.5382	11
$\pi^+ p$:	9.94262	7
$\pi^- p$:	9.28583	23
K^+p :	9.9541	7
K^-p :	11.5102	5

χ^2/dof	=	0.97
$\mathrm{CL}[\%]$	=	65.79
Name of	Numerical	Error
value	value	value
η_1	0.2722584	0.011413449
η_2	0.55494024	0.011591606
λ_s	0.81868653	0.0099211065
λ_m	0.99090423	0.0048304066
δ	0.0048475309	7.8785275E-06
B	0.016080647	0.0008444799
s_0	0.00045002716	0.00024455049
Y_{pp1}	7.4402016	0.12274107
$Y_{\pi p2}$	7.1370767	0.42528539
$Y_{\Sigma p2}$	34.384692	2.704391
λ_{s1}	0.32675709	0.020441243
λ_{m1}	0.71886442	0.008313214

Model quality indicators:

	A^M	C_1^M	C_2^M	U^M	R_1^M	R_2^M	S_1^M	S_2^M
$\mathbf{R}^{\mathrm{qc}}\mathbf{R}_{\mathrm{c}}\mathbf{L2}\ \mathbf{qc}(12)$	1.726	61.5	61.5	11.58	30.54	0.939	0.159	1.692

Repository:

computer - $\mathbf{NPT1}$

directory - d:\MathemD\Kolja\Evela\Gauron\(RqcRc)L2qc(12)

Appendix $\mathrm{R}^{\mathrm{qc}}\mathrm{R}_{\mathrm{c}}\ \mathrm{L2}^{\mathrm{qc}}(12)$ (N $\stackrel{\mathrm{o}}{=}14$) χ^2/NoP by data samples

					С	S da	ta					
Reaction	pp	$ar{p}p$	π^+	$p \mid \pi^-$	$p \mid l$	K^+p		^{-}p	Σ^{-}	\overline{p}	γp	$\gamma\gamma$
χ^2/NoP	1.03	1.2	0.47	7 1.0)4	0.45	0.	75	0.4	49	0.74	0.84
[ρ dat	ta					
	Reacti	ion	pp	$ar{p}p$	π^+	$p \mid \pi$	^{-}p	K	^{+}p	K	^{-}p	
	χ^2/N	oP	1.27	0.42	2.0	0.	76	0.6	58	1.	88	

				-	e	ç		۲. ۲				
	η_1	η_2	λ_s	${\boldsymbol{\lambda}}_m$	0	р	s_0	Y_{pp1}	$Y_{\pi p2}$	$Y_{\Sigma p2}$	λ_{s1}	${\boldsymbol{\lambda}}_{m1}$
η_1	100	24	-67.6	-71.9	3.15	-90.8	-93.8	75	23.4	10.5	-68.1	-86.8
η_2	24	100	-19.1	16.6	3.51	-10.9	-12.1	46.6	66	73.6	-6.9	-38.3
$\boldsymbol{\lambda}_s$	-67.6	-19.1	100	29.3	-1.77	61.7	63.7	-50.4	-18.3	-15.1	-1.54	74.1
λ_m	-71.9	16.6	29.3	100	-1.37	78.6	79.5	-25.2	17.3	16	70.9	36
δ	3.15	3.51	-1.77	-1.37	100	-2	-2.22	4.05	4.07	4.7	0.942	-6.87
B	-90.8	-10.9	61.7	78.6	-2	100	99.6	-42.2	-10.2	-1.67	72.7	81.4
s_0	-93.8	-12.1	63.7	79.5	-2.22	99.6	100	-48.4	-11.4	-2.35	72.9	82.8
Y_{pp1}	75	46.6	-50.4	-25.2	4.05	-42.2	-48.4	100	46.7	29.3	-34.6	-68.2
$Y_{\pi p2}$	23.4	66	-18.3	17.3	4.07	-10.2	-11.4	46.7	100	73.4	-6.93	-38.7
$Y_{\Sigma p2}$	10.5	73.6	-15.1	16	4.7	-1.67	-2.35	29.3	73.4	100	8.26	-23.2
λ_{s1}	-68.1	-6.9	-1.54	70.9	0.942	72.7	72.9	-34.6	-6.93	8.26	100	48.9
λ_{m1}	-86.8	-38.3	74.1	36	-6.87	81.4	82.8	-68.2	-38.7	-23.2	48.9	100

$\mathbf{R}^{\mathrm{qc}}\mathbf{R}_{\mathrm{c}}\ \mathbf{L2}^{\mathrm{qc}}(\mathbf{12})\ (\mathbf{N}^{\underline{0}}\mathbf{14})$

Appendix

Correlation matrix

Figure 23: Bold (empty) symbol marks fits with (without) ρ data and are shifted to the right (left) in energy slightly for the cleareness

