The South Limburg candidate site for the Einstein telescope: Geological and seismotectonic setting

A. Demoulin

Senior Research Associate FSR-FNRS Physical Geography and Quaternary, ULiege

The NW European scale: geological setting

The NW European scale: tectonic setting

« The Einstein telescope project » - Liege – January 31, 2018

(geological map of Wallonia, http://geoportail.wallonie.be/walonmap)

The regional scale: structural/lithologic cross-section

Plio-Quaternary tectonics – regional uplift and subsidence

Geomorphic indicators of tectonic deformation:

• incised valleys and river terrace staircases

« The Einstein telescope project » - Liege – January 31, 2018

(Rixhon & Demoulin, 2018)

increased incision rate = response

Plio-Quaternary tectonics – active faulting

Bree segment of the Geleen fault:

- displaced base of the ~740-ky-old Meuse terrace
- \rightarrow geologic slip rate of **0.04-0.07 mm/y**
- paleoearthquake record of the last ~100 ky
- \rightarrow paleoseismic slip rate of **0.03-0.06 mm/y**

1. Fault slip rates

Mean long-term (up to 1 My) fault slip rates are inferred from deformed geomorphic features and stratigraphic data:

- displaced river terraces
- offset in the base of alluvial deposits
- tectonic scarps

2. Seismic vs aseismic fault motion

Predominant seismic behaviour is indicated by:

- morphotectonic and sedimentary features at fault traces
- the correspondence between long term geologic and shorter-term (10⁴ y) paleoseismic slip rates

Present-day ground deformation – geodetic data

A. Feldbiss fault zone – PS-InSAR analysis – the aftermath of coal mining + GW seasonal oscillations

Present-day ground deformation – geodetic data

A. Levelling across the N margin of the Hautes Fagnes uplift – random fault creep event

(2) Random fault creep event

280

Present-day crustal deformation and ground motion – microseismicity

	IIIdX	-	IIIdX	
30 km	$A_{max} \approx$	8 µm	$A_{max} \approx$	0.8 mm

Ground motion – seismic attenuation - the geological as primary seismic isolator?

Source-station couples used for Q_c estimates in E Belgium and S Limburg

« The Einstein telescope project » - Liege – January 31, 2018

Ground motion – seismic shaking and site effects

KALTERHERBERG (D) - 1928-01-14 00:17:35 DERNIÈRE MISE-À-JOUR : 2010-06-07 17:09:57 HEURE BELGE

Paramètres au foyer

Date et heure	1928-01-14 00:17:35 T.U. 1928-01-14 00:17:35 Heure belge	
Туре	Tremblement de terre	
Magnitude	M _L 4.4 M _S 3.7	
Maximal intensity	VI	
Région	KALTERHERBERG (D)	
Coordonnées de l'épicentre	50.500° N, 6.100° E	

novement in mm

+ soft-sediment to moderately indurated Cretaceous cover

+ propagation of surface waves along the numerous thrust faults

+ vulnerability of abandoned mines to seismic shaking

Source de données : ROB (Royal Observatory of Belgium)

http://www.seismologie.be/fr/seismologie/tremblements-de-terre-en-belgique/ny2rwlmq4

(1st Atlas of Belgium, 1950-72)

Seismic wave amplification in the damage zone of NNW-SSE faults

Date et heure	2002-07-22 05:45:04 T.U. 2002-07-22 07:45:04 Heure belge	
Туре	Tremblement de terre	
Magnitude	M_L 4.9 M _W 4.6	
Maximal intensity	VI	
Région	ESCHWEILER - ALSDORF (DE)	
Coordonnées de l'épicentre	50.886° N, 6.207° E Incertitude ± 0.8 km	
Profondeur de l'hypocentre	16.4 ± 0.7 km	

South South BLOCK BL

Source de données : ROB (Royal Observatory of Belgium)

http://www.seismologie.be/fr/seismologie/tremblements-de-terreen-belgique/vw15qky10

Conclusion: South Limburg versus other nearby potential ET sites

	S Limburg	Mol (Campine)	Hautes Fagnes	Redu (central Ardenne)	Famenne
high-tech environment	+	+	0	+	0
building cost	-	+	-	-	0
active fault density		-	0	+	+
(micro)seismicity level	-	-	-	+	+
human-induced seismicity (quarries)	0	++	0	+	0
other human seismic noise (big cities, industry)	-	-	++	++	++
seismic attenuation	-	?	+	0	?
thrust faults as propagators of surface noise	-	+	+	+	+
lithologic/structural uniformity allowing simpler noise modelling		0	0	+	+
mine GW-induced ground deformation	-	-	+	+	+
seasonal GW-induced ground deformation	0	0	-	0	0
ground deformation from load variations (open pit mines in Germany, lakes)	-	+	-	+	+

Thank you

Plio-Quaternary tectonics – regional uplift and subsidence

Geomorphic indicators of tectonic deformation:

• tilted surfaces

Present-day ground deformation – geodetic data

A. Feldbiss fault zone – levelling at Sittard (NL) – seasonal groundwater perturbation + tectonic trend (?)

« The Einstein telescope project » - Liege – January 31, 2018

« The Einstein telescope project » - Liege – January 31, 2018