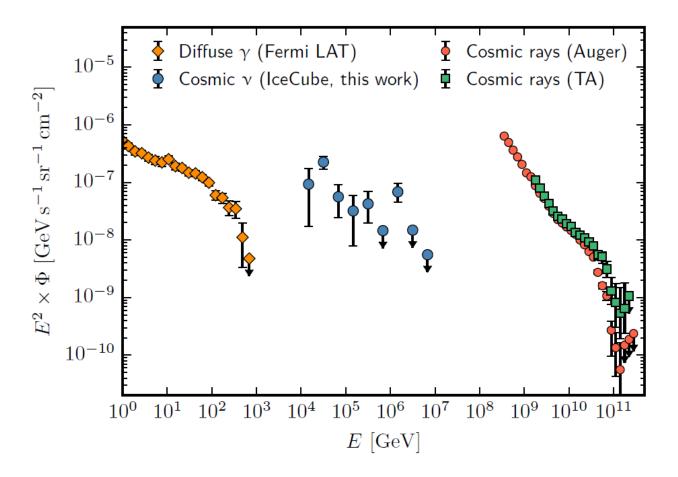
Multi-Messenger Astronomy


Nick van Eijndhoven nick@icecube.wisc.edu http://www.iihe.ac.be

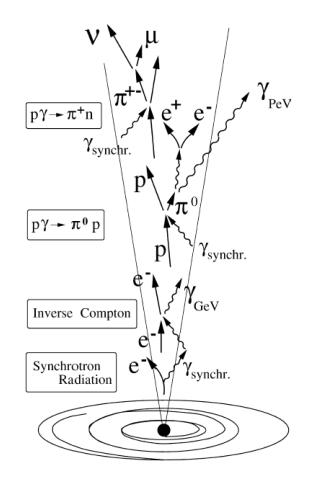
Observed spectra	1
The CR-Neutrino connection	4
The Gamma-Neutrino connection	8
Follow-up on Transient alerts	10
The GW-Gamma connection	14
Do we observe the GZK cut-off ?	15
Summary and Outlook	18

[Lars Mohrmann, PhD 2015, Humboldt University Berlin]

 $\begin{array}{ll} \text{Common astrophysical sources ?} \\ N + \gamma \rightarrow \Delta \rightarrow \pi + N \ \text{(CR)} & \pi^0 \rightarrow \gamma\gamma \ \text{(Fermi)} & \pi^\pm \rightarrow \nu, \bar{\nu} \ \text{(IceCube)} \end{array}$

Beware of the observable Universe: $\gamma + \gamma_{EBL} \rightarrow e^+e^ N+\gamma_{CMB} ightarrow\Delta$ optical X-rays gamma-rays neutrinos cosmic rays microwave 10⁴ cosmological max of star formation 10³ opaque to photons; transparent to neutrinos Distance [Mpc] 10² nearest Blazar 10¹ 10^{0} nearest Galaxy 10⁻¹ 10^{-2} **Galactic Center** Gravitational waves - ripples in space-time 10⁻³ 10^{4} 10-6 10^8 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} 10^{-4} 10⁰ 10² 10^{6} 10⁻² Energy [eV]


Credit Marek Kowalski



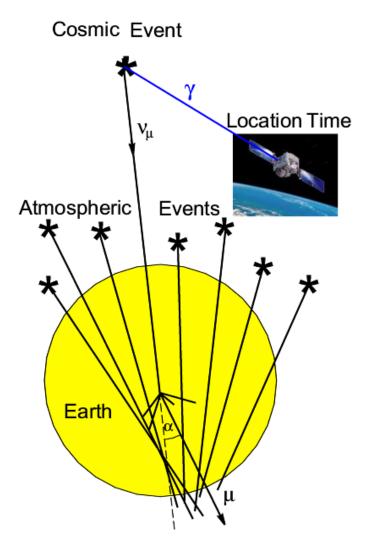
AGN and GRBs as possible sources

Processes in the jet

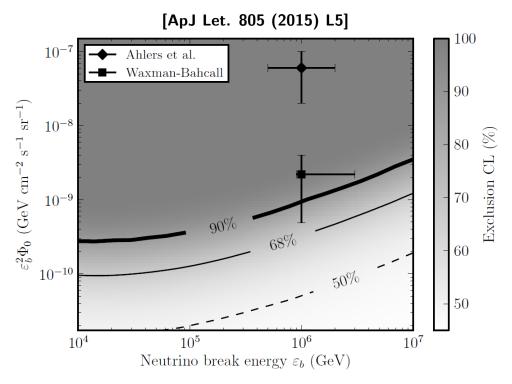
Neutrino production mechanism

thermal, e synchrotron, inverse Compton		
10 ¹⁶ eV	Î	$\Delta^+ \xrightarrow{20\%} E_p \pi^+ + n$
р+	·γ	Δ> π + n
	·	$\downarrow \mu^+ + \nu_\mu (400 \text{ TeV})$
		$e^+ + v_e + \bar{v}_\mu$
		20% E _p
		20% E _p → π ⁰ + p
		L → γγ(1 PeV)

$$n + \gamma \longrightarrow \Delta^0$$
 similar treatment

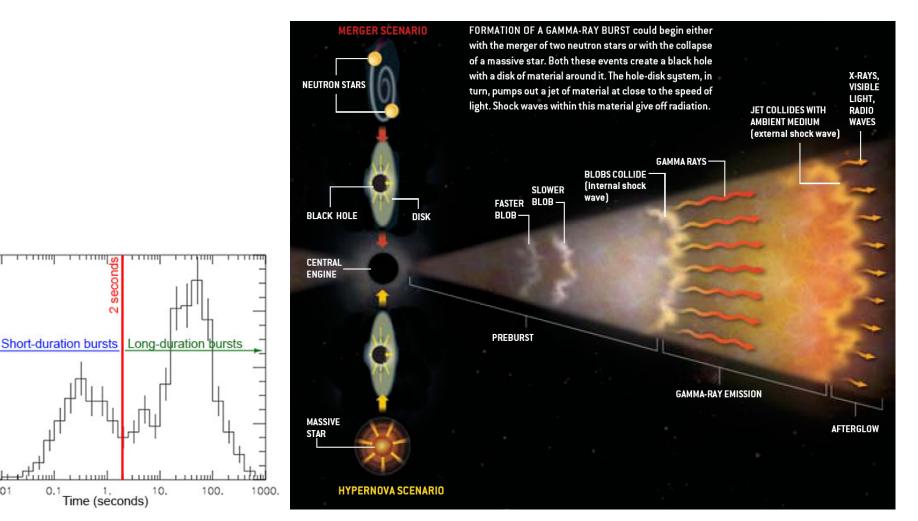

• Δ prod. threshold : $E_{\gamma} \geq 10$ eV (UV photons)

- Waxmann-Bahcall [PRL 78 (1997) 2292] High-E p diffuse out of the shocks Observed CR \rightarrow lower limit on p flux Fraction of p used for ν production ?
- M. Ahlers et al. [APP 35 (2011) 87] Protons trapped, neutrons escape CR observations provide the n flux Direct relation CR $\leftrightarrow \nu$ flux
- Generic broken powerlaw ν spectrum $E^{-1}\epsilon_b^{-1}$ $(E < \epsilon_b)$ $\Phi_{\nu}(E) \sim E^{-2}$ $(\epsilon_b \leq E \leq 10\epsilon_b)$ $E^{-4}(10\epsilon_b)^2$ $(E > 10\epsilon_b)$ with $\epsilon_b \approx 1$ PeV [JCAP 0903 (2009) 020]



Multi-Messenger observations

IceCube GRB prompt ν flux limit


GRBs not the (only) UHECR sources Or : ν prod./*E* lower than expected Or : ν prod. outside prompt phase

Observed bi-modal duration distr.

Possible GRB scenarios

Multi-Messenger studies may provide insight in the various processes

80

60

40

20

0

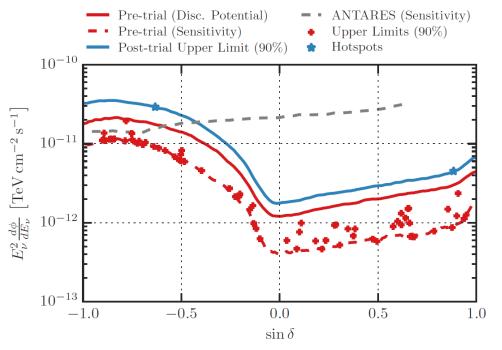
0.001

0.01

0.1

Number of bursts

TTTTT



IceCube search for neutrino point sources

All sky and bright AGN

[ApJ 835 (2017) 151]

- No point sources observed
- AGN source density
 - \rightarrow not the (only) UHECR sources

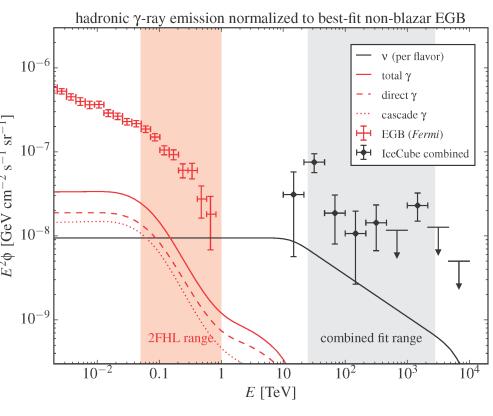
Cosmic ν and Fermi 2LAC Blazars

[ApJ 835 (2017) 45]

Various ν vs. γ flux models

Population	weighting scheme		
	equal	γ	γ (extrapol.)
all 2LAC blazars	19% - 27%	7%	10%
\mathbf{FSRQs}	5% - 17%	5%	7%
LSPs	6% - 15%	5%	7%
ISP/HSPs	9% - 15%	5%	7%
LSP-BL Lacs	3% - 13%	6%	9%

• Small contribution to cosmic ν flux Blazars not the cosmic ν sources



• Fermi EGB observations ~85% of diffuse γ 's from Blazars • IceCube observations Cosmic ν 's NOT from Blazars • Take EGB NON-Blazar component \rightarrow Prediction for ν flux * ν flux underestimated

Fermi and IceCube data tension

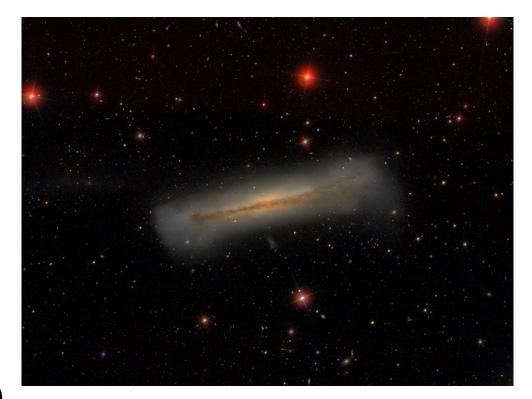
- Cosmic ν's from obscured sources ? [PRD 94 (2016) 103007]
- Dust may provide a "CR beam dump"
 - \rightarrow Neutrino factory
- * Accelerator must be present

[arXiv:1511.00688]

(2FHL: 2nd Fermi Hard Source List)

How to find obscured accelerators?

- Strong radio PS (flat spectrum) Possible pointing relativistic jet
- Weak X-ray and γ -ray Might indicate obscuration
- Strong infrared

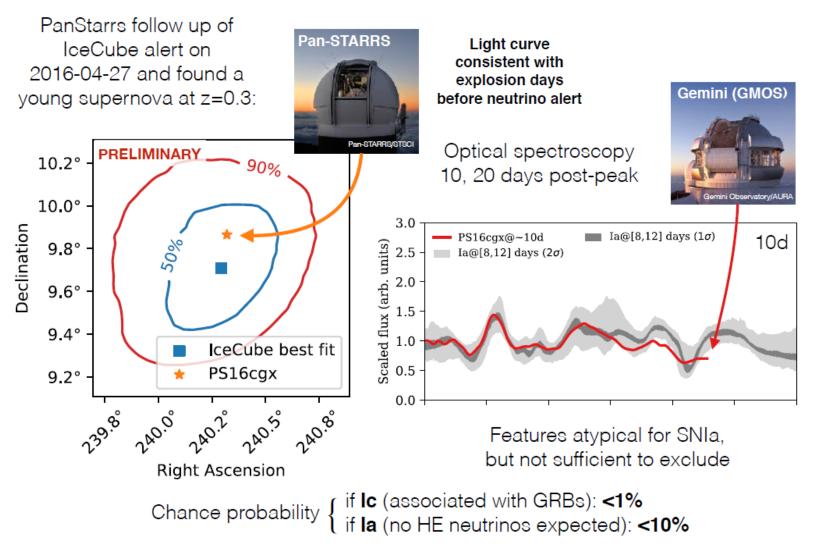

Indicates dusty environment

Promising ν sources

(numerous enough)

- Ultra Luminous IR Galaxies (ULIRGs)
- Starburst Galaxies with an AGN
- Interacting Galaxies

The "Hamburger" galaxy NGC 3628



[NASA Extragalactic Database]

Follow-up on Transient alerts

Credit M. Kowalski SuGAR2018

Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

M. Kadler^{1*}, F. Krauß^{1,2}, K. Mannheim¹, R. Ojha^{3,4,5}, C. Müller^{1,6}, R. Schulz^{1,2}, G. Anton⁷, W. Baumgartner³, T. Beuchert^{1,2}, S. Buson^{8,9}, B. Carpenter⁵, T. Eberl⁷, P. G. Edwards¹⁰, D. Eisenacher Glawion¹, D. Elsässer¹, N. Gehrels³, C. Gräfe^{1,2}, S. Gulyaev¹¹, H. Hase¹², S. Horiuchi¹³, C. W. James⁷, A. Kappes¹, A. Kappes⁷, U. Katz⁷, A. Kreikenbohm^{1,2}, M. Kreter^{1,7}, I. Kreykenbohm², M. Langejahn^{1,2}, K. Leiter^{1,2}, E. Litzinger^{1,2}, F. Longo^{14,15}, J. E. J. Lovell¹⁶, J. McEnery³, T. Natusch¹¹, C. Phillips¹⁰, C. Plötz¹², J. Quick¹⁷, E. Ros^{18,19,20}, F. W. Stecker^{3,21}, T. Steinbring^{1,2}, J. Stevens¹⁰, D. J. Thompson³, J. Trüstedt^{1,2}, A. K. Tzioumis¹⁰, S. Weston¹¹, J. Wilms² and J. A. Zensus¹⁸

individual objects are too low to make an unambiguous source association. Here, we report that a major outburst of the blazar PKS B1424-418 occurred in temporal and positional coincidence with a third petaelectronvolt-energy neutrino event (HESE-35) detected by IceCube. On the basis of an analysis of the full sample of γ-ray blazars in the HESE-35 field, we

There is a remarkable coincidence with the IceCube-detected petaelectronvolt-neutrino event HESE-35 with a probability of only \sim 5% for a chance coincidence. Our model reproduces the

Credit M. Ahlers SuGAR2018

IceCube: Track with $E_{dep}~\sim 20$ TeV and $\sim 1^\circ$ error observed ightarrow EHE alert

Fermi-LAT detection of increased gamma-ray activity of TXS 0506+056, located inside the IceCube-170922A error region.

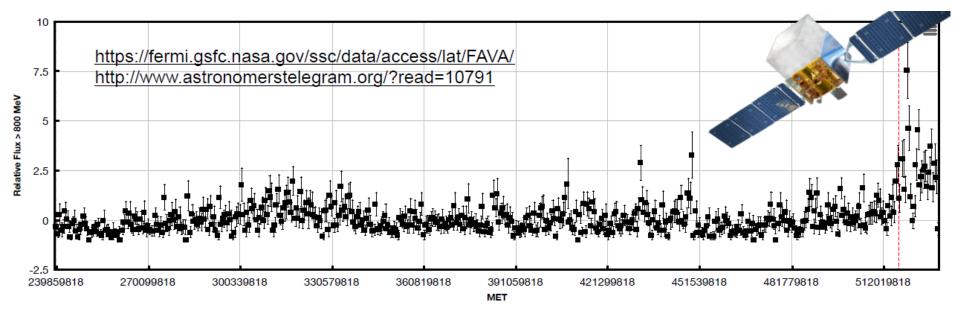
ATel #10791; Yasuyuki T. Tanaka (Hiroshima University), Sara Buson (NASA/GSFC), Daniel Kocevski (NASA/MSFC) on behalf of the Fermi-LAT collaboration on 28 Sep 2017; 10:10 UT Credential Certification: David J. Thompson (David J.Thompson@nasa.gov)

Subjects: Gamma Ray, Neutrinos, AGN

Referred to by ATel #: 10792, 10794, 10799, 10801, 10817, 10830, 10831, 10833, 10838, 10840, 10844, 10845, 10861, 10890, 10942

First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A

ATel #10817; Razmik Mirzoyan for the MAGIC Collaboration on 4 Oct 2017; 17:17 UT Credential Certification: Razmik Mirzoyan (Razmik.Mirzoyan@mpp.mpg.de)

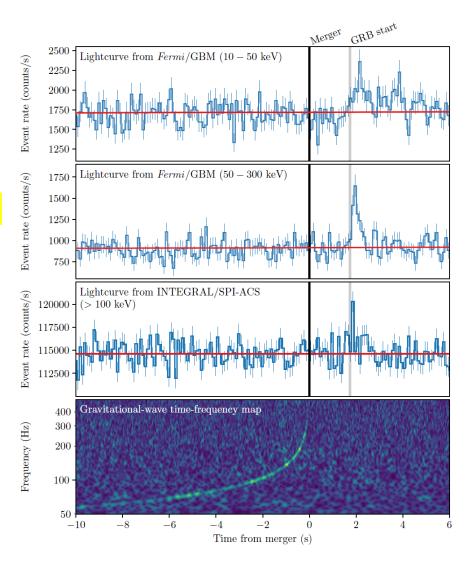

Subjects: Optical, Gamma Ray, >GeV, TeV, VHE, UHE, Neutrinos, AGN, Blazar

Referred to by ATel #: 10830, 10833, 10838, 10840, 10844, 10845, 10942

Fermi lightcurve for IC170922A

Credit M. Kowalski SuGAR2018

Many more observatories involved and analysis is ongoing

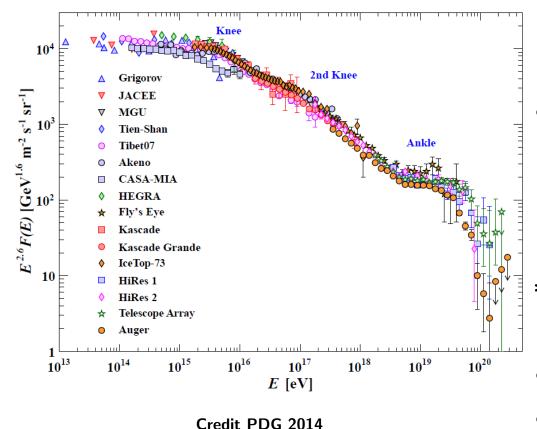

- GW170817: a NS-NS merger
- Weak, short GRB was observed Location coincidence

GRB ~ 1.7 sec. after the GW

Confirmed sGRB progenitor scenario

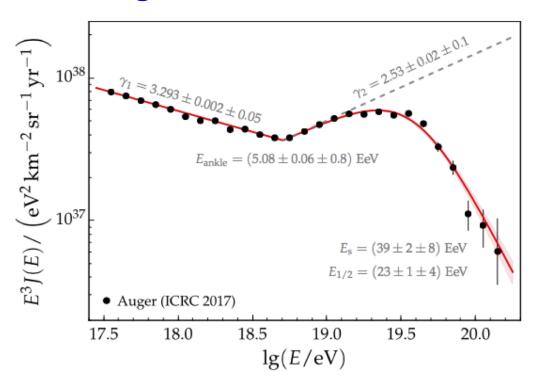
No neutrino counterpart was found

- GW gives good T_{start} for ν searches Would be nice for long GRBs
- Observation of GW counterparts Exploration of source evolution Independent proof of GR ? Discover new phenomena ?

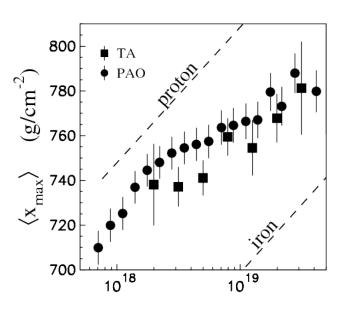


[ApJ Let. 848 (2017) L13]

The $E^{2.6}$ scaled Cosmic Ray flux



- Supernova blast waves
- Gyroradius $r = \frac{p}{ZeB}$ $(\vec{p} \perp \vec{B})$ $\rightarrow \left(\frac{p}{1 \text{ eV}}\right) = 0.03 \cdot Z\left(\frac{B}{1 \mu \text{G}}\right) \left(\frac{r}{1 \text{ m}}\right)$ Shock wave : extra factor $(\Gamma\beta)_{shock}$ • Accelerator of size R $r > R \rightarrow$ particles escape $\rightarrow E_{max}$ Typical : $B \approx \mu G$ $R \approx pc$ \rightarrow Protons : $E_{max} \approx 10^{15} \text{ eV}$ * At a certain $r \rightarrow E_Z = Z E_{proton}$ Structure around the Knee Supernovae run out of steam
- Convolution of various nuclei



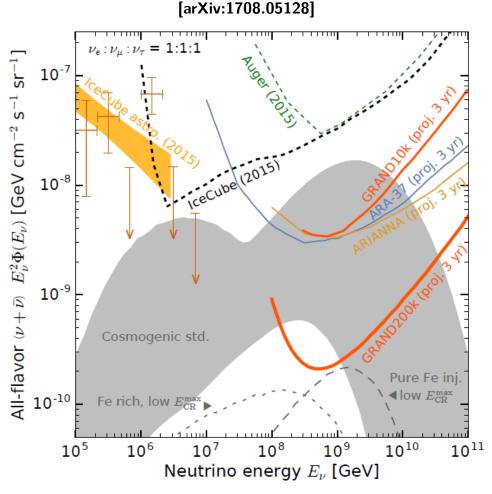
Region around the Ankle

Composition studies

- Large flux drop around $10^{19.5}$ eV Accelerators run out of steam ? Convolution of various nuclei ? GZK effect ? $(p + \gamma_{CMB} \rightarrow \Delta^+)$
- Composition becomes heavier ?
 * Can we identify a GZK component ? Multi-messenger may provide answer GZK ν's from Δ decay chain

Radio detection of UHE ν interactions

- Long (km-scale) attenuation length Cover large ($>100 \text{ km}^2$) area
- Detect events $> 10^{17} \text{ eV}$
- GZK ν : Proof of GZK effect or : **Insight in UHECR composition**


•
$$p + \gamma
ightarrow \Delta
ightarrow
u \quad (E_
u pprox 4\% \ E_p)$$

- $p + \gamma_{EBL}$: Low-E bump $p + \gamma_{CMB}$: High-E bump
- Iron: lower E/A and dissociation
- Iron: lower E/A and dissociation \rightarrow Higher E threshold and lower flux Radar reflections from shower plasma

New idea for $E < 10^{17} \text{ eV}$

Fill IceCube-Radio E gap

All disciplines within Astroparticle physics have come to maturity

- **Cosmic Rays : Auger, Telescope Array, IceTop, AMS, LOFAR**
- Gamma Rays : Integral, Fermi, Swift, HESS, Magic, Veritas, HAWC

Neutrinos : IceCube, Antares, ARA

Gravitational Waves : Ligo, Virgo

- * Observatories in Optical, IR, X-ray and Radio in addition
- All experiments deliver high-quality data with significant impact
 Discovery of Cosmic Neutrinos → Birth of Neutrino Astronomy
 Discovery of Gravitational Waves → Another new window on the Universe
- Details about various (sub)processes become more and more clear BUT... All experiments have their characteristic limitations
 Overall picture can only be unraveled by combining the various data
- Various detector upgrades c.q. new initiatives are in the pipeline Auger-Prime, CTA, IceCube-Gen2, KM3Net, GVD, GRAND, ET, LISA

Community consensus: Multi-Messenger is the way forward (SuGAR2018)

Rapid communication, follow-up campaigns and data exchange are needed

Currently : GCN, ATel, AMON, various MoU's

Creation of a Multi-Messenger consortium would be very instrumental

Same attitude was felt at the recent APPEC meeting

Let's combine forces and join a common enterprise !