Fundamental physics with Einstein Telescope

Bert.Vercnocke@KULeuven.be Gravitational Wave Center

This talk

1) Motivation

2) Fundamental physics targets

3) Example: The nature of horizons

Fundamental physics?

• New physics beyond:

Hints to new physics

"COINCIDENCES"

Strength of gravity Dark energy density General Relativity non-renormalizable

Information paradox

dark matter

dark energy

quantum

gravity

Hints to new physics

Why new GW detectors?

• Why haven't we ruled out everything already (beyond GR)?

 $m_g < 10^{-22} eV$ LIGO +Virgo, PRL116, 221101 (2017)

Why new GW detectors?

• Why haven't we ruled out everything already (beyond GR)?

 $m_g < 10^{-22} eV$ LIGO +Virgo, PRL116, 221101 (2017)

• Precision!

GW150914: black holes by sight?

• Einstein quadrupole + Newton's laws:

$$M_{\rm total} \sim 70 M_{\odot}$$
 $R = \sqrt{\frac{GM}{\omega_{\rm max}}} = 350 \ \rm km$

See also: LIGO/Virgo collaboration, "The basic physics of the binary black hole merger GW150914" arXiv:1608.01940

- No independent total mass
 - Too low SNR & GR templates

LIGO/Virgo collaboration, 2016

This talk

1) Motivation

2) Key targets

3) The nature of horizons

Einstein Telescope

Main Target Sources

- Merging black holes and neutron stars ... many thousands sources per year
 - Black holes z=15

- Neutron stars z=5

Sathyaprakash et al, "Scientific Objectives of Einstein Telescope" Arxiv:1206.0331

(current: z=0.5)

(current: 200Mpc)

ET design study, 2011

Large spectrum

From Moore, Cole, Berry (2014)
http://rhcole.com/apps/GWplotter/

Sesana 2016

Fundamental physics targets

• Astrophysics/astronomy/neutron stars...

see talks Vanbeveren/Van Eindhoven/van den Brand

- COSMOJOGY see talk Clesse
- Nature of GW radiation
 Dispersion, Lorentz violation...
- Testing gravity with black holes
 Are black holes described by GR Kerr metric?

This talk

1) Motivation

2) Key targets

3) The nature of horizons

True nature of black hole horizon

- 1) Tests of no-hair theorem
- 2) Quantum effects near horizons

No-hair conjecture

• Kerr black hole only depends on two parameters: *mass* and *spin*

Black hole uniqueness theorems: Israel, Carter, Hawking, Robinson '67-'75

• Astrophysical black holes too?

Black hole spectroscopy

Ringdown: for a black hole in GR $\omega_n \& \tau_n$ depend on mass & spin only

Quantum expectations

• Information paradox (Hawking '76)

- Quantum gravity:
 - New physics/structure at horizon
 - Many **recent** proposals and ideas: fuzzball, firewalls, gravastars, boson stars..

Let's make a toy model

• Reflecting surface at $r_{
m surf}=2M+\delta$

Where can quantum corrections hide?

Spectroscopy?

 $r_{\rm surf}$

- Prompt ringdown:
 - Not sensitive to near-horizon!
 - Determined by photon sphere

Gravitational Wave Echoes

Further modeling: [Price+17, Nakano+17, Barcelo+17] [Bueno, Cano, Goelen, Hertog, BV '17] **Search in LIGO data:** [Abedi, Dykaar, Afshordi '16] [Westerweck+17]

Rich new phenomenology

- "Exotic Compact Objects"
- Proxy for quantum structure
 - Wormholes, gravastars, boson stars ...

Cardoso, Pani arXiv:1707.03021 (extended version of Nature Physics review)

New "echoes"-pipeline (LIGO/Virgo- group C. Van Den Broeck)

Not mere

surface!

Better models?

Great new opportunities

- Interdisciplinary
- Macroscopic quantum gravity: modelling

